题目描述
给定两个单词 word1 和 word2,计算出将 word1 转换成 word2 所使用的最少操作数 。
你可以对一个单词进行如下三种操作:
- 插入一个字符
- 删除一个字符
- 替换一个字符
示例 1:
输入: word1 = "horse", word2 = "ros"
输出: 3
解释:
horse -> rorse (将 'h' 替换为 'r')
rorse -> rose (删除 'r')
rose -> ros (删除 'e')
示例 2:
输入: word1 = "intention", word2 = "execution"
输出: 5
解释:
intention -> inention (删除 't')
inention -> enention (将 'i' 替换为 'e')
enention -> exention (将 'n' 替换为 'x')
exention -> exection (将 'n' 替换为 'c')
exection -> execution (插入 'u')
我的解法——DP(AC)
class Solution(object):
def minDistance(self, word1, word2):
"""
:type word1: str
:type word2: str
:rtype: int
"""
if(not len(word1) or not len(word2)):
return abs(len(word1) - len(word2))
dp = []
for i in range(len(word1) + 1):
dp.append([0] * (len(word2) + 1))
for i in range(1, len(word1) + 1):
dp[i][0] = dp[i - 1][0] +1
for i in range(1, len(word2) + 1):
dp[0][i] = dp[0][i - 1] + 1
for i in range(1, len(word1) + 1):
for j in range(1, len(word2) + 1):
if(word1[i - 1] != word2[j - 1]):
dp[i][j] = dp[i - 1][j - 1] + 1
else:
dp[i][j] = dp[i - 1][j - 1]
dp[i][j] = min(min(dp[i - 1][j] + 1, dp[i][j - 1] + 1), dp[i][j])
return dp[len(word1)][len(word2)]